Blast traumatic brain injury (bTBI) may happen due to sudden blast and high-frequency loads. Due to the moral issues and the burden of experimental approaches, using computational methods such as finite element analysis (FEA) can be effective. Several finite element studies have focused on the effects of TBI to anticipate and understand the brain dynamic response. One of the most important factors in every FEA study of bTBI is the accurate modeling of brain tissue material properties. The main goal of this study is a comparison of different brain tissue constitutive models to understand the dynamic response of brain under an identical blast load. The multi-material FE modeling of the human head has several limitations such as its complexity and consequently high computational costs. Therefore, a spherical head model is modeled which suggests more straightforward observation/understanding of the FE modeling of skull (solid), CSF (fluid), and the brain tissue. Three different material models are considered for the brain tissue, namely hyperelastic, viscoelastic, and hyperviscoelastic. Brain dynamic responses are studied in terms of the head kinematics (linear acceleration), intracranial pressure (ICP), shear stress, and maximum mechanical strain. Our results showed that the hyperelastic model predicts larger ICP and shear than other constitutive brain tissue models. However, all material models predicted similar shear strain and head accelerations.

This content is only available via PDF.
You do not currently have access to this content.