In biomedical field, the microneedles have gained popularity in the transdermal drug delivery applications. A hollow out-of-plane microneedle with bevel shaped tip, made up of silicon material is considered in this paper. The safe insertion of such microneedles into the soft tissue without breakage plays a vital role in the design of microneedles. The primary mode of failure often found in microneedles is buckling. When the microneedle is applied with an insertion force (F) larger than the critical buckling load (Pcr), it may suffer from buckling. In this paper, the buckling analysis of silicon microneedle is performed using Finite Element Analysis. The equilibrium equation of Love’s (1944) thin rod theory is used to study the buckling effect of microneedle. A non-linear Eigen value buckling analysis of the hollow microneedle is performed. The fundamental mode 1 and the critical mode 813 are discussed. The deflection, stresses and reaction force are analysed for both the modes. The critical buckling load (Pcr) is determined to be 0.39 N and if the microneedle is applied with insertion force within this value of critical buckling load, it avoids buckling. Therefore, this critical buckling load is taken as a conservative result for designing the microneedle.
Skip Nav Destination
ASME 2016 International Mechanical Engineering Congress and Exposition
November 11–17, 2016
Phoenix, Arizona, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5053-4
PROCEEDINGS PAPER
Buckling Analysis of Hollow Microneedle in Transdermal Drug Delivery
N. Raja Rajeswari,
N. Raja Rajeswari
Anna University, Chennai, India
Search for other works by this author on:
B. K. Gnanavel
B. K. Gnanavel
Anna University, Chennai, India
Search for other works by this author on:
N. Raja Rajeswari
Anna University, Chennai, India
P. Malliga
Anna University, Chennai, India
B. K. Gnanavel
Anna University, Chennai, India
Paper No:
IMECE2016-65083, V003T04A034; 6 pages
Published Online:
February 8, 2017
Citation
Raja Rajeswari, N, Malliga, P, & Gnanavel, BK. "Buckling Analysis of Hollow Microneedle in Transdermal Drug Delivery." Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. Volume 3: Biomedical and Biotechnology Engineering. Phoenix, Arizona, USA. November 11–17, 2016. V003T04A034. ASME. https://doi.org/10.1115/IMECE2016-65083
Download citation file:
37
Views
Related Proceedings Papers
Related Articles
Biomechanical Property of a Natural Microneedle: The Caterpillar Spine
J. Med. Devices (September,2011)
Hydrogel-Forming Microneedle Arrays for Sustained and Controlled Ocular Drug Delivery
ASME J of Medical Diagnostics (November,2020)
The Penn State Safety Floor: Part II—Reduction of Fall-Related Peak Impact Forces on the Femur
J Biomech Eng (August,1998)
Related Chapters
Advantages of Chitosan as Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Nanomaterials: A brief introduction
Biocompatible Nanomaterials for Targeted and Controlled Delivery of Biomacromolecules
Drug Delivery Nanosystems as a Promising Area of Modern Chemistry and Medicine. Silica Nanoparticles as Potential Drug Carriers
Silica Nanoparticles as Drug Delivery System for Immunomodulator GMDP (Biomedical & Nanomedical Technologies - Concise Monograph Series)