In the rapidly growing field of additive manufacturing (AM), the focus in recent years has shifted from prototyping to manufacturing fully functional, ultralight, ultrastiff end-use parts. This research investigates the mechanical behavior of octahedral, octet, vertex centroid, dode, diamond, rhombi octahedron, rhombic dodecahedron and solid lattice structured polyacrylate fabricated using Continuous Liquid Interface Production (CLIP) technology based on 3D printing and additive manufacturing processes. The compressive stress-strain behavior of the lattice structures observed is typical of cellular structures which include a region of nominally elastic response, yielding, plastic strain hardening to a peak in strength, followed by a drop in flow stress to a plateau region and finally rapid hardening associated with contact of the deformed struts with each other as part of densification. It was found that the elastic modulus and strength of the various lattice structured materials are proportional to each other. In addition, it was found that the octahedral, octet and diamond lattice structures are amongst the most efficient based on the measured specific stiffness and specific strength.

This content is only available via PDF.
You do not currently have access to this content.