Design of the new generation of aircraft is driven by the vastly increased cost of fuel and the resultant imperative for greater fuel efficiency. Carbon fiber composites have been used in aircraft structures to lower weight due to their superior stiffness and strength-to-weight properties. However, carbon composite material behavior under dynamic ballistic and blast loading conditions is relatively unknown. For aviation safety consideration, a computational constitutive model has been used to characterize the progressive failure behavior of carbon laminated composite plates subjected to ballistic impact conditions. Using a meso-mechanics approach, a laminated composite is represented by a collection of selected numbers of representative unidirectional layers with proper layup configurations. The damage progression in a unidirectional layer is assumed to be governed by the strain-rate dependent layer progressive failure model using the continuum damage mechanics approach. The composite failure model has been successfully implemented within LS-DYNA as a user-defined material subroutine. In this paper, the ballistic limit velocity (V50) was established for a series of laminates by ballistic impact testing. Correlation of the predicted and measured V50 values has been conducted to validate the accuracy of the ballistic modeling approach for the selected carbon composite material. The availability of this modeling tool will greatly facilitate the development of carbon composite structures with enhanced ballistic and blast survivability.

This content is only available via PDF.
You do not currently have access to this content.