As the unsprung components of vehicle, lightweight wheel plays a significance role for handling stability and riding comfort. Besides, the energy saving effect of lightweight design for wheel is 1.2 to 1.3 times as much as that of components without rotating. Therefore, the lightweight design of wheel is an inevitable development tendency in future. For the wheel composed by long-fiber reinforced composites through injection process, the difference of fiber distribution and orientation at various positions leads to anisotropy on the macro performance. This paper explores a new type of high-performance thermoplastic composites (LGFTs) material reinforced by long glass fiber for lightweight wheel design. The dynamic impact simulations on the LGFT wheel with isotropic properties and anisotropic properties are conducted according to the ISO procedure, using the software Moldflow, Digimat, and Abaqus. The comparison of the simulation results demonstrates that the anisotropic properties of material have a significant effect on the impact characteristics of the wheel. The research in this paper is beneficial to improve the accuracy of the impact simulation on LGFT wheel, and also provides foundation for further lightweight design of the wheel.

This content is only available via PDF.
You do not currently have access to this content.