Although Lagrangian and Hamiltonian analytical mechanics represent perhaps the most remarkable expressions of the dynamics of a mechanical system, these approaches also come with limitations. In particular, there is inherent difficulty to represent dissipative processes and the restrictions placed on end point variations are not consistent with the definition of initial value problems. The present work on poroelastic media extends the recent formulation of a mixed convolved action to address a continuum dynamical problem with dissipation through the development of a new variational approach. The action in this proposed approach is formed by replacing the inner product in Hamilton’s principle with a time convolution. As a result, dissipative processes can be represented in a natural way and the required constraints on the variations are consistent with the actual initial and boundary conditions of the problem. The variational formulations developed here employ temporal impulses of velocity, effective stress, pore pressure and pore fluid mass flux as primary variables in this mixed approach, which also uses convolution operators and fractional calculus to achieve the desired characteristics. The resulting mixed convolved action is formulated in both the time and frequency domains to develop two new stationary principles for dynamic poroelasticity. In addition, the first variation of the action provides a temporally well-balanced weak form that leads to a new family of finite element methods in time, as well as space.

This content is only available via PDF.
You do not currently have access to this content.