The dielectric elastomer (DE) is an insulating membrane with extra-ordinary properties which can meet various electromechanical failures during the actuation. In the current work, we measured breakdown voltage in DE membrane with special focus on the varying boundary stress during the actuation process. The boundary stress tuned deformation state, causing the membrane to deform out-of-plane before breakdown. A theoretical model is presented, involving the strain-stiffening effect in material and boundary stress effect in geometry, to estimate the dielectric breakdown voltage. The results agree with the experiments. Then, another set of experimental investigation is conducted to study the voltage-induced wrinkling of DE membrane. Steady wrinkles, without an accompany of electrical breakdown are attained and three different failure modes of DE membrane are classified into a phase chart. Finally, a qualitative theoretical explanation on wrinkling mechanism of DE membrane is presented and verified by experimental observations.

This content is only available via PDF.
You do not currently have access to this content.