In this paper, the thermal performance of a high concentration ratio parabolic trough system and the potential for improved thermal performance using Syltherm800-CuO nanofluid were investigated and presented. The parabolic trough system considered in this study has a concentration ratio of 113 compared with 82 in current commercial systems. The heat transfer fluid temperature was varied between 350 K and 650 K and volume fractions of nanoparticle were in the range 1–6%. Monte-Carlo ray tracing was used to obtain the actual heat flux on the receiver’s absorber tube. The obtained heat flux profiles were subsequently coupled with a computational fluid dynamics tool to investigate the thermal performance of the receiver. From the study, the results show that with increased concentration ratios, receiver thermal performance degrades, with both the receiver heat loss and the absorber tube circumferential temperature differences increasing, especially at low flow rates. The results further show that the use of nanofluids significantly improves receiver thermal performance. The heat transfer performance increases up to 38% while the thermal efficiency increases up to 15%. Significant improvements in receiver thermal efficiency exist at high inlet temperatures and low flow rates.

This content is only available via PDF.
You do not currently have access to this content.