The thermal management capability of various candidates of micro-pin fin arrays is investigated. An integrated circuit having a footprint of 4 × 3 mm with micro-pin fin array having circular, airfoil and convex cross-section is considered. The three pin fin cross-sections along with the cooling schemes are optimized to handle a uniform heat flux of 500 W/cm2 applied to the top surface of the electronic chip. A fully three-dimensional, steady-state conjugate heat transfer analysis was performed on each cooling configuration and a constrained multi-objective optimization was carried out for each of the three micro-pin fin shapes to find pin fin designs configurations capable of cooling such high heat fluxes. The design variables were the geometric parameters defining each pin fin cross section, height of the chip and inlet speed of the coolant. The two simultaneous objectives were to minimize maximum temperature and pressure drop (pumping power), while keeping the maximum temperature below 85°C. A response surface was constructed for each objective function and was coupled with a genetic algorithm to arrive at a Pareto frontier of the best trade-off solutions. Stress-deformation analysis incorporating the hydrodynamic and thermal loads was performed on each of the three optimized configurations. The maximum displacement was found to be on the nano-level, and the Von-Mises stress for each configuration was found to be significantly below the yield strength of Silicon.
Skip Nav Destination
ASME 2015 International Mechanical Engineering Congress and Exposition
November 13–19, 2015
Houston, Texas, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5747-2
PROCEEDINGS PAPER
Multi-Objective Optimization of Micro Pin-Fin Arrays for Cooling of High Heat Flux Electronics
Sohail R. Reddy,
Sohail R. Reddy
Florida International University, Miami, FL
Search for other works by this author on:
George S. Dulikravich
George S. Dulikravich
Florida International University, Miami, FL
Search for other works by this author on:
Sohail R. Reddy
Florida International University, Miami, FL
George S. Dulikravich
Florida International University, Miami, FL
Paper No:
IMECE2015-54166, V07BT09A053; 9 pages
Published Online:
March 7, 2016
Citation
Reddy, SR, & Dulikravich, GS. "Multi-Objective Optimization of Micro Pin-Fin Arrays for Cooling of High Heat Flux Electronics." Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 7B: Fluids Engineering Systems and Technologies. Houston, Texas, USA. November 13–19, 2015. V07BT09A053. ASME. https://doi.org/10.1115/IMECE2015-54166
Download citation file:
30
Views
Related Articles
Microelectromechanical System-Based Evaporative Thermal Management of High Heat Flux Electronics
J. Heat Transfer (January,2005)
Single Phase Liquid Cooling of High Heat Flux Devices With Local Hotspot in a Microgap With Nonuniform Fin Array
J. Heat Transfer (March,2021)
Related Chapters
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Thermoelectric Coolers
Thermal Management of Microelectronic Equipment
Component and Printed Circuit Board
Thermal Management of Telecommunications Equipment