T-sectioned configurations with a deadleg at the stopple are present in natural gas pipelines, where liquid water may accumulate, increasing the potential for internal corrosion. The objectives of the present study are to explore the pipeline operating conditions under which water enters the deadleg and define an operating protocol to prevent water accumulation in deadlegs. A combined computational fluid dynamics (CFD) experimental and analytical study was conducted to understand the behavior of liquid slugs at the T-junctions with dead ends. The flow equations were solved as an unsteady multiphase (gas and water) incompressible flow problem using the Volume of Fluid (VoF) Method. The analytical calculations were based on a modified form of the macroscopic mechanical energy balance equation. In order to computationally simulate the critical velocity at which water enters the deadleg, the inlet gas flow rate was specified to be a fixed value, while the water flow rate was gradually increased. The liquid entirely bypasses the deadleg until the liquid water velocity exceeds a critical value, which was noted as the critical superficial liquid velocity. The experimental study was conducted using a flow loop to understand the behavior of liquid water at the T-junction and determine the condition when liquid enters the deadleg. The analytical and computed solutions were compared with experimental observations. The computed results follow the same pattern as the experimental and analytical data. Solutions indicate that critical superficial liquid velocity is linearly dependent on superficial inlet gas velocity.
Skip Nav Destination
ASME 2015 International Mechanical Engineering Congress and Exposition
November 13–19, 2015
Houston, Texas, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5747-2
PROCEEDINGS PAPER
Analysis of Two-Phase Stratified Flow and Liquid Hold Up at Dead Ends of T-Sectioned Natural Gas Pipelines
Kaushik Das,
Kaushik Das
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
Debashis Basu,
Debashis Basu
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
Xihua He,
Xihua He
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
Stuart Stothoff,
Stuart Stothoff
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
Kevin Supak,
Kevin Supak
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
Rebecca Owston
Rebecca Owston
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
Kaushik Das
Southwest Research Institute, San Antonio, TX
Debashis Basu
Southwest Research Institute, San Antonio, TX
Xihua He
Southwest Research Institute, San Antonio, TX
Stuart Stothoff
Southwest Research Institute, San Antonio, TX
Kevin Supak
Southwest Research Institute, San Antonio, TX
Rebecca Owston
Southwest Research Institute, San Antonio, TX
Paper No:
IMECE2015-50049, V07BT09A011; 8 pages
Published Online:
March 7, 2016
Citation
Das, K, Basu, D, He, X, Stothoff, S, Supak, K, & Owston, R. "Analysis of Two-Phase Stratified Flow and Liquid Hold Up at Dead Ends of T-Sectioned Natural Gas Pipelines." Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 7B: Fluids Engineering Systems and Technologies. Houston, Texas, USA. November 13–19, 2015. V07BT09A011. ASME. https://doi.org/10.1115/IMECE2015-50049
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
PCB Migration and Cleanup Scenarios in Natural Gas Pipelines
J. Energy Resour. Technol (June,2004)
Co-Current Gas-Liquid Smooth-Stratified Flow in a Horizontal Reduced T-Junction Including Wavy and Slug Regime Transition Boundaries
J. Fluids Eng (May,2011)
CFD Analysis of Thermally Stratified Flow and Conjugate Heat Transfer in a PWR Pressurizer Surgeline
J. Pressure Vessel Technol (April,2010)
Related Chapters
Pipeline Integrity and Security
Continuing and Changing Priorities of the ASME Boiler & Pressure Vessel Codes and Standards
DYNAMIC GEOHAZARD MANAGEMENT IN CHALLENGING ENVIRONMENT
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
HIGH STRAIN WELD SOLUTIONS FOR GEOHAZARD ACTIVE ENVIRONMENT
Pipeline Integrity Management Under Geohazard Conditions (PIMG)