This paper reports on the development of a conceptual design, construction and instrumentation of an experimental facility that can be used to carry out experimental research towards increasing energy efficiency in buildings. The overarching idea is to construct a system that emulates the scaled dimensions and materials of a typical building structure. The sub-scale testbed consists of a two-floor building configuration with dimensions of 1.2 m × 0.92 m × 1.1 m. The building structure is made out of wood, and covered with drywall and fiberglass insulation. Fixed walls are selected for the first floor whereas movable walls are incorporated into the second floor to study the effects of different room configurations. Four staircase openings enable airflow between the two floors. The second floor has a tiled-style ceiling and removable walls that allow for connectivity of sensors and actuators. A set of heating and cooling sub-systems, consisting of light bulbs and thermoelectric coolers connected to fans, are used for each room in the building. Both the set of light bulbs as well as the cooling system are powered through a relay box, and connected to a computer via LabVIEW which also interfaces the different sensing and actuating devices. The capabilities of the experimental facility are tested by implementing time-dependent heating- and cooling-processes and an on-off control strategy on a two-room prototype. Preliminary results demonstrate that the experimental testbed offers a reliable and versatile experimental system for research purposes.

This content is only available via PDF.
You do not currently have access to this content.