Dynamic characteristics of a bicycle such as handling and stability can be studied during the design phase to comprehend specific aspects associated with the overall layout as well as the frame architecture. Bicycles demonstrate unique properties such as static instability that is overcome by getting them into motion with a minimum velocity threshold. The structural stiffness of a frame plays a critical role in the handling behavior of a bike. However, the influence of structural stiffness has received limited attention in the existing literature. This paper attempts to fill the gap by presenting analytical results from a study that includes the influence of rider positions on three bicycle layouts. The analytical model consists of four rigid bodies: rear frame, front frame (front fork and handle bar assembly), front wheel and rear wheel. The overall model exhibits three degrees-of-freedom: the roll angle of the frame, the steering of the front frame, and the rotation of the rear wheel with respect to the frame. The rear frame is divided into two parts, the rider and the bicycle frame, that are assumed to be rigidly connected. This is done in order to allow the model to account for varying rider positions. The influence of frame flexibility is studied by coupling the structural stiffness of the frame to the governing equations of motion. Layouts from a benchmark bicycle, a commercially manufactured bicycle, and a cargo bicycle are used for this study in conjunction with rider positions ranging from a relaxed position to an extreme prone position. All the results are analyzed and compared with some proven analytical and experimental results in the existing literature. Results indicate that some of the rider positions can play a significant role in influencing the dynamic characteristics of the bike. Structural stiffness is seen to significantly affect the weave mode, only when the stiffness is reduced substantially.

This content is only available via PDF.
You do not currently have access to this content.