Pores (namely lacunae, clusters of canaliculi, Haversian canals, and resorption cavities) are present throughout cortical bone. This paper characterizes the area fraction (AF, %)) of each type of these pores as function of distance from the bone’s geometric center while noting the region in which such pores are located: midcortical or periosteal.

Optical slides (at 20X) are taken from 2 cortical bone biopsies named bone 1 and bone 2 and cut at mid-diaphysis femur from 2 different (about 2 year-old) bovine cows. The slides are collected from posterior (pericortical) and anterior (intracortical) locations. The area of each of these biopsies is about 2.5mm × 3mm located near the outer cortex of the bone. In polar coordinates from the bone’s center, the areas cover radial distance of about 3.3 mm (of radius, R) and encompass an arc of 10°.

Automated segmentation is used to locate and identify all pores in the optical slides the shapes of which are best fitted into ellipses. Values of area fraction, AF (%) of said fitted ellipses are then automatically calculated in secondary osteons for both regions. Variations in values of area fraction AF (%) are related to actual areas of pores (based on their defining equations).

Observations suggest that area fractions (%) of all pores (but to lesser degree for Haversian canals), to significantly decrease linearly and in a steep fashion with R (statistically significant, p < 0.01) in the anterior region where osteonal growth is expected to have continued to develop. However, in the posterior region where osteonal growth appears to have matured, area fraction (%) values seem to have reached a steady state resulting in fairly flat behavior versus R. All observations are equally applicable for biopsies collected from bone 1 and bone 2.

This content is only available via PDF.
You do not currently have access to this content.