Titanium (Ti) and Ti-based alloys are widely used as implants for hard tissue repair. However, the optimal surface properties for ideal integration of Ti implant with native tissues have not yet been achieved. The goal of this study was to improve the bio-mechanical performances of titanium (Ti) implant by implant surface modification such as coating fiber on the implant surface. It is hypothesized that deposition of fiber with certain architecture can increase mechanical interlock of Ti surface which leads to the increment of in vitro bonding of Ti/cement interfaces. The research objectives were to (1) test the fracture strength of Ti-cement with one round, two rounds and five rounds of PCL fiber under static load to determine the topology effect of electrospun fiber material on the Ti/PMMA cement interface; (2) test the fracture strength of Ti-cement with PCL fiber and PCL-PMMA fiber, with and without heating up Ti before fiber under static load to determine the topography effect of electrospun fiber material on the Ti/PMMA cement interface. PCL and PCL-PMMA fibers coated on the Ti surfaces were produced by electrospinning technique using PCL-acetone fiber solution and PCL-PMMA-acetone solution respectively. Under static conditions, Ti/PMMA union specimen with and without fiber were tested to determine the fracture strength. The result showed one round of PCL fiber has higher fracture strength than two rounds and five rounds of fiber, which suggested that more fibers on the surface were not benefit to the fracture strength of Ti-cement interface. With PMMA added into the polymer fiber solution, the fracture strength of Ti-fiber-cement increased. Heating up the Ti implant to 50°C before coating PCL fiber can help the PCL fiber become stickier to the Ti implant which leads to the increasing of the fracture strength of Ti-cement interface. However, for PCL-PMMA fiber, heating up Ti implant before fiber doesn’t help improve the quality of Ti-cement interface as PCL fiber.

This content is only available via PDF.
You do not currently have access to this content.