The calibrated wrench method is often used for tightening. When tightening bolted joints, it is important to apply high initial axial tension. However, since the axial tension is indirectly applied in this method, it varies and is widely distributed in the case of tightening carried out in the production line of a factory, for example. However, the calibrated wrench method is still widely used because of the simple tool used and easy standardization. Conventionally, this type of distribution has been considered to lie within a rhombus. In our previous paper, we analyzed and discussed the case when the distribution of the tightening torque and the equivalent stress of the bolted joint are considered to be independent random variables; in this case, the distribution becomes elliptical. Using this feature, a higher target tightening torque can be set than before. Finally, we established a procedure for the analysis and calculation of the optimum tightening torque for bolted joints. To ensure sufficient long-term tightening reliability to prevent breakage and loosening, a high initial axial tension and high equivalent stress can be realized using this proposed method. In this study, we analyze and discuss the case of differences in the tightening work condition (process control capability) and the tightening design condition. The tightening work coefficient a depends on the management state, the tightening working posture, and the process control capability of a tool or shop floor at a production site. According to the results of our trial calculation in Appendix A, the improvement ratio of the proposed target tightening torque is approximately 8.3% compared with the conventional method for dry friction and approximately 7.5% in the case of oily friction. Furthermore, in bolted joint tightening design, the tightening conditions under which the design conditions are satisfied are derived analytically. For the tightening design conditions of (1) a minimum axial stress of at least 50% at the yield point, and (2) an equivalent stress of 70% to 90% at the yield point, both the conventional and proposed areas of the confidence limit are obtained by precise analysis. Although the permitted limit of the tightening design condition cannot be realized by the conventional method, it can be realized by the proposed elliptical confidence limit method. Finally, we establish a method for maintaining the tightening reliability that involves applying high axial tension by increasing the target design tightening torque using the elliptical confidence limit.

This content is only available via PDF.
You do not currently have access to this content.