The hazards from a boiling liquid expanding vapor explosion (BLEVE) include the formation of a blast wave and the projection of missiles. To understand the maximum work that can be obtained from a BLEVE, the authors have investigated in previous publications certain aspects of BLEVE behavior using exergy analysis. One of the key limitations in relating exergy calculations to more realistic behavior is the lack of knowledge of how the exergy of the explosion is partitioned into various types of work that occur in the BLEVE process. Some of these work terms include the formation and propagation of a shock wave, the strain work of vessel deformation and rupture into missiles, the initial kinetic energy of the missiles, and the surface work of aerosol droplet formation. In this paper we explore one of these work terms, the surface work performed in transforming the bulk liquid into aerosol droplets. The advantage of using exergy analysis to evaluate the maximum work of an explosion is that exergy is a state variable: its value depends only on the initial conditions of the high pressure fluid and the specification of the dead state. The methodology is illustrated for several pure component fluids.

This content is only available via PDF.
You do not currently have access to this content.