Dielectric elastomers hold much promise as smart materials that could rapidly adapt to changes in environmental conditions due to their mechanical response to an electrical input. They belong to the group of electroactive polymers which have unique mechanical properties such as flexibility, light-weight, and electrical field-induced deformation. These characteristics make dielectric elastomers suitable candidates as actuators, sensors, or energy converter media. The objective of this study is to characterize the structural dynamic response of a dielectric elastomer membrane exposed to stagnant air environment and steady airflow at different angles of attack. A simulation of the fluid-structure interaction of the membrane is performed by coupling an electromechanical finite element model of the membrane with a computational fluid dynamics model representing the external flow. From the fluid-structure interaction simulation, the vibration frequencies and mode shapes, the time-varying out-of-plane deformation, and the coefficients of lift and drag are determined. Furthermore, a convergence study and mesh refinement are performed to guarantee mesh independence of the calculations from the fluid-structure interaction simulation. Results indicate that the stiffness of the electroactive membrane decreases nonlinearly with an increase of the applied voltage. The electrostatic force from the applied voltage adds compressive stress to the membrane, effectively softening the membrane, increasing the out-of-plane deformation, and reducing the resonance frequency.
Skip Nav Destination
ASME 2014 International Mechanical Engineering Congress and Exposition
November 14–20, 2014
Montreal, Quebec, Canada
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4959-0
PROCEEDINGS PAPER
Characterization of the Electromechanical Response of a Dielectric Elastomer Membrane
Jose E. Rubio,
Jose E. Rubio
University of New Orleans, New Orleans, LA
Search for other works by this author on:
Pratik Sarker,
Pratik Sarker
University of New Orleans, New Orleans, LA
Search for other works by this author on:
Uttam K. Chakravarty
Uttam K. Chakravarty
University of New Orleans, New Orleans, LA
Search for other works by this author on:
Jose E. Rubio
University of New Orleans, New Orleans, LA
Pratik Sarker
University of New Orleans, New Orleans, LA
Uttam K. Chakravarty
University of New Orleans, New Orleans, LA
Paper No:
IMECE2014-38797, V010T13A016; 7 pages
Published Online:
March 13, 2015
Citation
Rubio, JE, Sarker, P, & Chakravarty, UK. "Characterization of the Electromechanical Response of a Dielectric Elastomer Membrane." Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 10: Micro- and Nano-Systems Engineering and Packaging. Montreal, Quebec, Canada. November 14–20, 2014. V010T13A016. ASME. https://doi.org/10.1115/IMECE2014-38797
Download citation file:
15
Views
Related Proceedings Papers
Basic Characterization of a Linear Elastomer Actuator
IDETC-CIE2009
Related Articles
Reduced Model and Application of Inflating Circular Diaphragm Dielectric Elastomer Generators for Wave Energy Harvesting
J. Vib. Acoust (February,2015)
Dynamics of Cricket Sound Production
J. Vib. Acoust (August,2015)
Vibration Frequencies and Modes of a Z-Shaped Beam With Variable Folding Angles
J. Vib. Acoust (August,2016)
Related Chapters
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
Vortex-Induced Vibration
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook