Precise estimation of wall stress distribution within an abdominal aortic aneurysm (AAA) is clinically useful for prediction of its rupture. In this paper a computational fluid dynamic model incorporating two-way coupled fluid-structure interaction is employed to investigate the role of laminar-turbulent flow transition and wall thickness in altering the distribution and magnitude of wall stress in an AAA. Blood flow in axially symmetric aneurysm models governed by a compliant wall mechanics was simulated. Menter’s hybrid k-epsilon/k-omega shear stress transport (SST) model with a correlation-based transition model was used to capture laminar-turbulent transition in the blood flow. Realistic physiological transient boundary conditions were prescribed. The numerical model was validated against experimental data available from the literature. Fluid flow analysis showed the formation of recirculating vortices at the proximal end of the aneurysm after the peak systole which then, moved towards the distal end of the aneurysm along with the bulk flow and were dissipated eventually due to viscous effects. These vortices interacted with the aortic wall and led to local pressure rise. Von Mises stress distribution on the aneurysm wall and location of its peak value were computed and compared with those of a separate numerical simulation performed using a laminar viscous flow model. The predicted peak wall stress was found to be significantly higher for the SST model as compared to the laminar flow model. The location of maximum stress shifted more towards the posterior end of the aneurysm when laminar-turbulent flow transition was considered. In addition, a small reduction of 0.4 mm in wall thickness resulted in the elevation of peak wall stress by a factor of 1.4. The present study showed that capturing flow transition in an AAA is essential to accurate prediction of its rupture. The proposed numerical model provides a robust computational framework to gain more insight into AAA biomechanics and to accurately estimate wall stresses in realistic aneurysm configurations.
Skip Nav Destination
ASME 2014 International Mechanical Engineering Congress and Exposition
November 14–20, 2014
Montreal, Quebec, Canada
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4958-3
PROCEEDINGS PAPER
Computational Modeling of the Effects of Transient Blood Flow Characteristics and Wall Thickness on the Rupture of Abdominal Aortic Aneurysm
Pinaki Pal
Pinaki Pal
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
Pinaki Pal
University of Michigan, Ann Arbor, MI
Paper No:
IMECE2014-36150, V009T12A082; 8 pages
Published Online:
March 13, 2015
Citation
Pal, P. "Computational Modeling of the Effects of Transient Blood Flow Characteristics and Wall Thickness on the Rupture of Abdominal Aortic Aneurysm." Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 9: Mechanics of Solids, Structures and Fluids. Montreal, Quebec, Canada. November 14–20, 2014. V009T12A082. ASME. https://doi.org/10.1115/IMECE2014-36150
Download citation file:
16
Views
Related Proceedings Papers
Related Articles
Computational Fluid–Structure Interactions in the Human Cerebrovascular System: Part 1—A Review of the Current Understanding of Cerebrovascular Biomechanics
ASME J of Medical Diagnostics (August,2022)
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
J Biomech Eng (August,1996)
Effects of Cyclic Motion on Coronary Blood Flow
J Biomech Eng (December,2013)
Related Chapters
Fluid Mechanics
Engineering Practice with Oilfield and Drilling Applications
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow