Liquid-desiccant (LD) dehumidification technology has been used to extract moisture from humid air while attempting to consume less electricity than traditional air-conditioning methods. An evaporative cooling tower (ECT) was used as a cooling device to reject the latent heat gained by the system to regenerate the desiccant solution. The performance of an ECT was evaluated both experimentally and through TRNSYS simulations to investigate optimal operating conditions. The ECT often operated in humid conditions which resulted in reduced heat rejection rates and ineffective operation. To improve performance, cooling water storage (CWS) was investigated as a way to reduce ECT usage during periods of higher ambient humidity. To undertake this study, the complete LD system, incorporating CWS, was modelled in TRNSYS for a range of typical operating conditions. The results indicated that operation of the CWS system reduced the electrical power consumption and increased the electrical coefficient of performance (COPE) of the liquid desiccant air conditioning unit system by up to 16%. The total cooling rate improved by up to 6%. Smaller gains in COPT and solar fraction were also found in the simulation results.

You do not currently have access to this content.