Fire safety and sustainability goals in building design are frequently interdependent. Design elements chosen for their fire safety can have energy efficiency implications and vice versa. Furthermore, the environmental damage and carbon emissions from a single fire event can negate the utility of green features invested in the building. Therefore, while not obvious, fire safety and its impact on sustainability are inextricably linked. One of the decisions related to both sustainability and fire safety is the selection of thermal insulation materials. Insulating materials have always been an integral part of building design, serving as a key component in thermally controlling indoor environments. Modern designs and construction techniques often incorporate sustainability goals by seeking to minimize life cycle energy consumption and environmental impact. A well-insulated building reduces thermal load on the HVAC system, thus reducing energy consumption of the building. Therefore, a sustainably designed building is typically a heavily insulated building. In addition to thermal resistance characteristics, the choice of insulating material is often based on acoustic damping and cost. However, fire safety is generally overlooked as a factor for insulation material selection. Few treatments have considered how the competing objectives for sustainability and fire safety should be assessed when choosing insulation. This paper discusses a methodology for balancing these requirements by evaluating the aforementioned attributes of various insulating materials through implementation of a weighted mean. Each variable is normalized and then weighted according to the emphasis placed on each attribute, using experimental data for the relevant material property. Four weighting scenarios are presented, each emphasizing a different area of consideration: installed cost, fire safety, life-cycle assessment, and thermal. Materials considered are cellulose (newspaper), denim (cotton), fiberglass, stone wool, polyurethane, and polystyrene. Results of this analysis rank the materials in order of desirability and provide a method to reorder this ranking based on the priority assigned to each attribute. For the weighting scenarios presented herein, stone wool was consistently ranked as the best performer, while extruded polystyrene was typically the weakest. The intent is that this methodology would be informative for designers selecting materials and for planners contemplating revised building codes.
Skip Nav Destination
ASME 2014 International Mechanical Engineering Congress and Exposition
November 14–20, 2014
Montreal, Quebec, Canada
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4955-2
PROCEEDINGS PAPER
A Multi-Objective Fire Safety and Sustainability Screening Tool for Specifying Insulation Materials
Bonnie C. Roberts,
Bonnie C. Roberts
University of Texas at Austin, Austin, TX
Search for other works by this author on:
Michael E. Webber,
Michael E. Webber
University of Texas at Austin, Austin, TX
Search for other works by this author on:
Ofodike A. Ezekoye
Ofodike A. Ezekoye
University of Texas at Austin, Austin, TX
Search for other works by this author on:
Bonnie C. Roberts
University of Texas at Austin, Austin, TX
Michael E. Webber
University of Texas at Austin, Austin, TX
Ofodike A. Ezekoye
University of Texas at Austin, Austin, TX
Paper No:
IMECE2014-38593, V08AT10A043; 9 pages
Published Online:
March 13, 2015
Citation
Roberts, BC, Webber, ME, & Ezekoye, OA. "A Multi-Objective Fire Safety and Sustainability Screening Tool for Specifying Insulation Materials." Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 8A: Heat Transfer and Thermal Engineering. Montreal, Quebec, Canada. November 14–20, 2014. V08AT10A043. ASME. https://doi.org/10.1115/IMECE2014-38593
Download citation file:
20
Views
Related Proceedings Papers
Related Articles
Retrofitting for Improving Energy Efficiency: The Embodied Energy Relevance for Buildings’ Thermal Insulation
J. Eng. Sustain. Bldgs. Cities (May,2021)
Energy Efficiency, Sources and Sustainability
J. Energy Resour. Technol (June,2010)
Integration of Sustainability Into Early Design Through the Function Impact Matrix
J. Mech. Des (August,2010)
Related Chapters
Use of PSA in Lisencing of EPR 1600 in Finland (PSAM-0160)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
“iEnergy-from-Waste”: Evolution or Revolution in Automation for Municipal Waste Treatment Facilities?
Proceedings of 2018 EEC/WTERT Conference
Handy Facts Regarding Types of Thermal Insulation
Hydraulics, Pipe Flow, Industrial HVAC & Utility Systems: Mister Mech Mentor, Vol. 1