The objective of this paper is to study the effect of eccentricity on the thermal characteristics and flow field of a triple-concentric free jet burner. The investigation concerns three values of eccentricity (1.25, 1.88, and 2.5 times the inner-jet diameter); and in addition to the normal centric jet (no eccentricity). Prediction of the reacting flow characteristics and the planar flow visualization for all burners’ configurations is simulated with the CFD k-ε turbulence of “ANSYS-CFX”. In addition, the finite rate and eddy dissipation model is utilized to simulate the interaction between the chemical reaction and turbulence. The temperature, velocity and turbulence intensity are investigated to simulate the thermal-structure interaction. The results are obtained at a constant momentum rate. It showed significant changes in the coherent structures shed from the annular jets. By increasing the eccentricity, the maximum temperature will be attained more rapidly than centric case. In addition, the mixing point become nearer the burner rim, which increased the flame size and shifted the flame structure.

This content is only available via PDF.
You do not currently have access to this content.