A continuous-rotation testing technique is applied to capture the variation of aerodynamic loads with attitude on objects of arbitrary shape. The technique converts the problem of measuring static air loads at various attitudes into a periodic problem. Phase-resolved ensemble-averaging is used to capture load variations with arbitrarily fine azimuthal resolution. The airload variations are obtained in closed form as discrete Fourier series. Experiments on a cylinder model of equal length and diameter were used to study the ability to capture asymmetries, and resolve support interference issues. A closed cuboid is used to correlate with prior work. A flat plate with a central cylindrical load, and a porous box are also studied. Free-swing tests using rigid tethers fixed to a pitch-yaw-roll gimbal mount are used to derive dynamic behavior in a free stream. The cylinder results showed the ability to resolve the effect of minor geometric asymmetries on airloads. The flat plate at 10 degrees pitch shows strong differences in dynamics between cases with a rounded versus squared-off edge facing the freestream. The porous box shows the differences between cases with and without one side blocked.

This content is only available via PDF.
You do not currently have access to this content.