In the present work, two dimensional flow simulations have been performed to study the effect of tangential blowing on the drag force for the case of flow around a circular cylinder only at Reynolds number (Re) 200. Blowing ports have been placed symmetrically with respect to the horizontal flow axis. The effect of blowing on the boundary layer has been studied with respect to the intensity of blowing as well as port position of blowing. For a particular intensity of blowing, oscillations of the front stagnation point and the separation point was studied. It was found that oscillation frequencies were identical with that of lift coefficient. It was also observed that with the increase of the intensity of the blowing the position of the separation point shifts downstream (separation delay)thus the wake becomes narrower resulting the decrease of drag. Strouhal number was found to increase with the intensity of blowing. It was observed that the Strouhal number as well as the position of the separation point is influenced by the position of the blowing port. Although, for a significant range of the blowing port positions the Strouhal number is observed to be constant. Drag was found to be influenced by the position of the blowing ports. Pressure drag was found to be more significant. Thus total drag is influenced primarily by the pressure drag. It was observed that in the range of 40° to about 110° for the position of the blowing port drag decreased. But beyond 110° it increased again.

This content is only available via PDF.
You do not currently have access to this content.