We present optical analyses of a microfluidic tunable liquid prism to find its optimized configuration that can achieve wider beam steering as well as less reflection loss and eventually maximize solar energy capture without mechanical tracking. For this study, four different prism configurations are compared from single to quad-stacked ones with various refractive indices of the liquids filled in the prism. Its beam steering capability can be improved by increasing the refractive index ratio between the liquids used and by using higher number of the stacked prisms. The quad-stacked prism is able to steer incoming sunlight with an incident angle of a α ≤ ± 75° at an apex angle of φ ≤ ± 30°, which represents more than 5 times improvement, when it is compared to the single prism using the same liquids. For appropriate liquid material selection, the effect of refractive index ratio, r = n2/n1, on beam steering was additionally studied. However, one considerable issue is the fact that the better beam steering, the more reflection loss. This is because both higher number of interfaces and larger refractive index ratio make more reflection at each of the interfaces. Our reflectance analysis showed that the quad prism performs inferior to the double prism until α = ± 32°, while being of superior beam steering performance. To further reduce the solar energy loss through the quad prism, a modified configuration is proposed with a thin film added to the interfaces. 50 % of the total reflection was reduced. Our technology promises an alternative to a low-cost and high-efficiency solar tracking system capable of beam steering as wide as ± 75° and reflection loss as low as 4.5%, during all daily tracking of the sun.

This content is only available via PDF.
You do not currently have access to this content.