As the penetration ratio of renewable energy sources becomes larger, the fluctuations of grid load also become larger and larger because of the intermittent generation of wind power and photovoltaic power. These fluctuations cause instability of voltage and frequency in the power grid.

Recently, there has been considerable research into solving these challenges, leading to development such as batteries, flywheels, and improved flexibility of thermal power plants. The batteries and the flywheels are confronted with the challenge of high initial cost for the Mega-Watt class. Improving flexibility for the thermal power plants is effective, but this improvement has several limitations such as load-follow operation capability under mechanical constraints and frequency regulation within governor-free regulating capacity.

To overcome these problems, we propose a new gas turbine system named Motor-assisted Gas Turbine (MAGT). MAGT is composed of a two-shaft gas turbine: one free turbine shaft is connected to a synchronous generator rotating at a constant speed, and the other compressor shaft is coupled to an inverter-fed motor controlled at variable speed. The motor and inverter capacity is appropriate: about 5–10 % that of the gas turbine. MAGT improved the reaction rate corresponding to the load fluctuation by changing the speed of the compressor. Since the motor’s shaft, which has a compressor and a high pressure turbine, rotates at high speed and those masses are considerable, it has rotational energy of about several kWh. This energy could be charged and discharged through the converter that controls the motor speed, the same as for flywheels. This response could be much faster than conventional gas turbines, which contain huge amounts of working gas. MAGT controls its rotational energy in seconds and controls gas turbine power in minutes; thereby it improves response totally. Moreover, by assisting the compressor by using motor power, MAGT can increase gas turbine power output. Since the density of air decreases with as temperature increase, the mass of working gas is reduced. Thus, the fuel input must accordingly be reduced to suppress the combustion temperature without damaging turbine blades. As a result, power output is reduced. In such cases, a motor-assisted compressor can increase working gas. That allows more fuel input.

The proposed system was evaluated using numerical simulations. The results showed that frequency variations were within ±0.1Hz and the output power was recovered under high ambient temperature.

This content is only available via PDF.
You do not currently have access to this content.