In this paper a boat simulator is designed using parallel manipulators. The simulator allows the training of five or seven people in a river environment. Due to the high payload and high inertial forces, it was proposed to divide the simulator into various synchronized platforms. Additionally different configurations of mechanisms were evaluated as well as linear or rotational actuation. The dimensional synthesis was performed by introducing a power index based on the Virtual Work equations of motion, and applying Genetic Algorithms for optimization. This design process results in using two coordinated manipulators with rotational actuators. The first one has two degrees of freedom (pitch and roll); it will simulate the motion of the boat’s stern. The second one has three degrees of freedom: pitch, roll and heave; and simulates the motion of the boat’s bow. The detail design was concluded and the manipulators were built. A real time controller is under design nowdays and the integration of the fluid and the boat dynamics into the inverse dynamics analysis of the manipulators is proposed as future work.

This content is only available via PDF.
You do not currently have access to this content.