Up-down and rifle aiming maneuvers are common tasks employed by soldiers and athletes. The movements underlying these tasks largely determine performance success, which motivates the need for a noninvasive and portable means for movement quantification. We answer this need by exploiting body-worn and rifle-mounted miniature inertial measurement units (IMUs) for measuring torso and rifle motions during up-down and aiming tasks. The IMUs incorporate MEMS accelerometers and angular rate gyros that measure translational acceleration and angular velocity, respectively. Both sensors enable independent estimates of the orientation of the IMU and thus, the orientation of a subject’s torso and rifle. Herein, we establish the accuracy of a complementary filter which fuses these estimates for tracking torso and rifle orientation by comparing IMU-derived and motion capture-derived (MOCAP) torso pitch angles and rifle elevation and azimuthal angles during four up-down and rifle aiming trials for each of 16 subjects (64 trials total). The up-down trials consist of five maximal effort get-down-get-up cycles (from standing to lying prone back to standing), while the rifle aiming trials consist of rapidly aiming five times at two targets 15 feet from the subject and 180 degrees apart. Results reveal that this filtering technique yields warfighter torso pitch angles that remain within 0.55 degrees of MOCAP estimates and rifle elevation and azimuthal angles that remain within 0.44 and 1.26 degrees on average, respectively, for the 64 trials analyzed. We further examine potential remaining error sources and limitations of this filtering approach. These promising results point to the future use of this technology for quantifying motion in naturalistic environments. Their use may be extended to other applications (e.g., sports training and remote health monitoring) where noninvasive, inexpensive, and accurate methods for reliable orientation estimation are similarly desired.

This content is only available via PDF.
You do not currently have access to this content.