The spinal load sharing and mechanical stresses developed in the spine segments due to mechanical loads are dependent on the unique spinal anatomy (geometry and posture). Variation in spinal curvature alters the load sharing of the lumbar spine as well as the stiffness and stability of the passive tissues. In this paper, effects of lumbar spine curvature variation on spinal load sharing under compressive Follower Load (FL) are investigated numerically. 3D nonlinear Finite Element (FE) models of three ligamentous lumbosacral spines are developed based on personalized geometries; hypo-lordotic (Hypo-L), normal (Normal-L) and hyper-lordotic (Hyper-L) cases. Analysis of each model is performed under Follower Load and developed stress in the discs and forces in the collagen fibers are investigated.

Stresses on the discs vary in magnitude and distribution depending on the degree of lordosis. A straight hypo-lordotic spine shows stresses more equally distributed among discs while a highly curved hyper-lordotic spine has stresses concentrated at lower discs. Stresses are uniformly distributed in each disc for Hypo-L case while they are concentrated posteriorly for Hyper-L case. Also, the maximum force in collagen fibers is developed in the Hyper-L case. These differences might be clinically significant related to back pain.

This content is only available via PDF.
You do not currently have access to this content.