The objective of this work is to characterize the interaction between balloon-expandable stents and curved artery simulants. The deformation at the outer surface of the curved artery simulant was monitored using two high-speed cameras, and the corresponding strain map was obtained with 3-D digital image correlation technique. The anisotropic variations in the arterial mechanics were clearly observed. Results indicated three distinct phases during the stenting procedure, i.e., expansion, recoil and stabilization. The stent expansion dramatically altered the strain field of the curved artery simulant, and larger strain was observed around the center of stent than its two ends. In addition, the change in curvature of the simulant during the implantation of stent was quantified. This work characterized and quantified the interaction between stent and artery simulant in a laboratory setting, which could facilitate the optimization of the stent design for minimizing the stent-induced changes in the mechanical environment of artery.

This content is only available via PDF.
You do not currently have access to this content.