Finite element (FE) model updating is now recognized as an effective approach to reduce modeling inaccuracies present in an FE model. FE model updating has been researched and studied well for updating FE models of purely structural dynamic systems. However there exists another class of systems known as vibro-acoustics in which acoustic response is generated in a medium due to the vibration of enclosing structure. Such systems are commonly found in aerospace, automotive and other transportation applications. Vibro-acoustic FE modeling is essential for sound acoustic design of these systems. Vibro-acoustic system, in contrast to purely structural system, has not received sufficient attention from FE model updating perspective and hence forms the topic of present paper.
In the present paper, a method for finite element model updating of coupled structural acoustic model, constituted as a problem of constrained optimization, is proposed. An objective function quantifying error in the coupled natural frequencies and mode shapes is minimized to estimate the chosen uncertain parameters of the system. The effectiveness of the proposed method is validated through a numerical study on a 3D rectangular cavity attached to a flexible panel. The material property and the stiffness of joints between the panel and rectangular cavity are used as updating parameters. Robustness of the proposed method under presence of noise is investigated. It is seen that the method is not only able to obtain a close match between FE model and corresponding ‘measured’ vibro-acoustic characteristics but is also able to estimate the correction factors to the updating parameters with reasonable accuracy.