In general, vehicle uses torsional stiffness of a stabilizer bar to control the roll motion. But this stabilizer bar system has problems with degradation for ride comfort and vehicle’s NVH characteristic due to the suspension parasitic stiffness caused by deformation and wear of the stabilizer bar rubber bush. In addition, it is difficult to control the vehicle’s roll motion effectively in case of excessive vehicle roll behavior when it is designed to satisfy ride comfort simultaneously because of the stabilizer bar’s linear roll stiffness characteristic. In this paper, the new anti-roll system is suggested which consists of connecting link, push rod, laminated leaf spring, and rotational bearing. This new concept anti-roll system can minimize the suspension parasitic stiffness by using rotational bearing structure and give the vehicle non-linear roll stiffness by using the laminated leaf spring structure which are composed of main spring and auxiliary one. Reduction of suspension parasitic stiffness and realization of non-linear roll stiffness in this anti-roll system were verified with both vehicle dynamic simulation and vehicle test. Also, this study includes improvement of the system operating efficiency through material change and shape optimization of the leaf spring, and optimal configuration of the force transfer system.

This content is only available via PDF.
You do not currently have access to this content.