This paper describes an approach commonly used with complex networks to study the failure propagation in an engineered system design. The goal of the research is to synthesize and illustrate system design characteristics that results from possible impact of the underlying design methodology based on cascading failures. Further, identifying the most vulnerable component in the design or system design architectures that are resilient to such dissemination of failures provide additional property improvement for resilient design. The paper presents a case study based on the ADAPT (Electrical Power System) EPS testbed at NASA Ames as a subsystem for the Ramp System of an Infantry Fighting Vehicle (IFV). A popular methodology based on the adjacency matrix, which is commonly used to represent edge connections between nodes in complex networks, has inspired interest in the use of similar methods to represent complex engineered systems. This is made possible, by defining the connections between components as a flow of energy, signal, and material and constraining physical connection between compatible components within complex engineered systems. Non-linear dynamical system (NLDS) and epidemic spreading models are used to compare the failure propagation mean time transformation. The results show that coupling, modularity, and module complexity all play an important part in the design of robust large complex engineered systems.

This content is only available via PDF.
You do not currently have access to this content.