Thermoelectric coolers (TECs) are solid-state cooling devices that operate on the Seebeck effect. They can be used in electronics cooling applications as well as other refrigeration systems. Among the various factors that affect TEC performance within a system, it has been shown that the thermal conductance is an important parameter which can also be easily altered during the design of a TEC to deliver optimal TEC performance for a given application. However, these studies have considered only a fixed heat load and heat sink temperature, whereas in many realistic applications these quantities can vary. A procedure has been developed for optimizing the thermal conductance of a TEC based on a typical operating cycle of time-varying heat load and sink temperature, while permitting constraints that ensure that one or more worst-case operating conditions can also be met. This procedure is valid for any arbitrary heat load and sink temperature functions; however, for illustrative purposes, a simple heat load function at fixed sink temperature (and a sink temperature function at fixed heat load) are used. The results show that the optimal conductance can strongly depend on the operating cycle, and the corresponding reduction in electrical input work (and corresponding increase in net COP) can be significant.
Skip Nav Destination
ASME 2013 International Mechanical Engineering Congress and Exposition
November 15–21, 2013
San Diego, California, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5639-0
PROCEEDINGS PAPER
Optimization of a Thermoelectric Cooler for Time-Varying Heat Load and Sink Temperature
Matthew R. Pearson,
Matthew R. Pearson
United Technologies Research Center, East Hartford, CT
Search for other works by this author on:
Charles E. Lents
Charles E. Lents
United Technologies Research Center, East Hartford, CT
Search for other works by this author on:
Matthew R. Pearson
United Technologies Research Center, East Hartford, CT
Charles E. Lents
United Technologies Research Center, East Hartford, CT
Paper No:
IMECE2013-65942, V010T11A088; 12 pages
Published Online:
April 2, 2014
Citation
Pearson, MR, & Lents, CE. "Optimization of a Thermoelectric Cooler for Time-Varying Heat Load and Sink Temperature." Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 10: Micro- and Nano-Systems Engineering and Packaging. San Diego, California, USA. November 15–21, 2013. V010T11A088. ASME. https://doi.org/10.1115/IMECE2013-65942
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
The Compatibility of Thin Films and Nanostructures in Thermoelectric Cooling Systems
J. Heat Transfer (July,2007)
Merits of Employing Foam Encapsulated Phase Change Materials for Pulsed Power Electronics Cooling Applications
J. Electron. Packag (June,2008)
Thermoelectric Cooling Analysis Using Modified-Graphical-Method for Multidimensional-Heat-Transfer-System
J. Electron. Packag (September,2011)
Related Chapters
Thermoelectric Coolers Are Hot
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong
Thermoelectric Coolers
Thermal Management of Microelectronic Equipment
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential