Optical disk drives (ODD) have become one of the most popular solutions for large storage capacity applications and are widely used in consumer electronics. For precise positioning in optical disk drives (ODD), the actuating system using MEMS technology has been considered as a very promising solution. This paper aims to optimize a recently proposed microactuator design as a fine-tracking device for high-density ODD. The microactuator device is electrothermally driven and consists of suspended bimorph beams that are connected to electric heater through linkage hinges on a micromirror platform. Static and dynamic characteristics of the microactuator device are analyzed using coupled electrothermal-mechanical finite element models. Our modeling results reveal that the performance of the original design is undesirable as the central mirror platform is undergoing a lateral shift and is bent concave down when the microactuator is activated. In order to maintain the relative flatness of the mirror surface, a new design with a folded-arm structure is proposed. The design is further optimized using experimental design and response surface method to achieve large actuation displacement and improved resonant frequency response. Overall, the results show that the optimized design outperforms the original design in achieving large displacement, fairly small lateral shift and mirror flatness under the same actuating voltage, while maintaining a compact size and supporting the high bandwidth servo control.
Skip Nav Destination
ASME 2013 International Mechanical Engineering Congress and Exposition
November 15–21, 2013
San Diego, California, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5639-0
PROCEEDINGS PAPER
Response Surface Based Optimization of an Electro-Thermal Microactuator for High Track Density Optical Disk Drives
Qikai Xie,
Qikai Xie
Washington State University, Vancouver, WA
Search for other works by this author on:
Xiaolin Chen
Xiaolin Chen
Washington State University, Vancouver, WA
Search for other works by this author on:
Qikai Xie
Washington State University, Vancouver, WA
Xiaolin Chen
Washington State University, Vancouver, WA
Paper No:
IMECE2013-65375, V010T11A069; 7 pages
Published Online:
April 2, 2014
Citation
Xie, Q, & Chen, X. "Response Surface Based Optimization of an Electro-Thermal Microactuator for High Track Density Optical Disk Drives." Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 10: Micro- and Nano-Systems Engineering and Packaging. San Diego, California, USA. November 15–21, 2013. V010T11A069. ASME. https://doi.org/10.1115/IMECE2013-65375
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Designing and Analyzing Multistable Mechanisms Using Quadrilateral Boundary Rigid Origami
J. Mechanisms Robotics (January,2024)
Second-Order Cone Programming Approach to Design of Linkage Mechanisms With Arbitrarily Inclined Hinges
J. Mech. Des (October,2018)
Track-Following Control With Active Vibration Damping of a PZT-Actuated Suspension Dual-Stage Servo System
J. Dyn. Sys., Meas., Control (September,2006)
Related Chapters
Regression
Engineering Optimization: Applications, Methods, and Analysis
The ServoTeach Module
Precision Programming of Roving Robots: Project-Based Fundamentals of Wheeled, Legged and Hybrid Mobile Robots
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies