In this paper, the performance of a PDMS-based microfluidic device is thoroughly characterized for detecting continuous static and dynamic loads. This device comprises of a single PDMS rectangular microstructure and a set of electrolyte-enabled distributed transducers. It is fabricated by a standard fabrication process well developed for PDMS-based microfluidic devices. One potential application of this device is to measure spatially-varying mechanical properties of heterogeneous soft materials, through quasi-static, stress relaxation and dynamic mechanical analysis (DMA) tests. Thus, the response of this device to three types of inputs: static, step and sinusoidal, is examined with a custom experimental setup. For the first time, the capability of using a polymer-based microfluidic device to detect sinusoidal inputs is reported. The characterized results demonstrate the potential of using this device to measure soft materials.

This content is only available via PDF.
You do not currently have access to this content.