Aerosol direct-write printing for mesoscale features has been commercially available since around 2002 from Optomec®. We have developed variances to this process first in Collimated Aerosol Beam-Direct Write (CAB-DW) for printing sub-10 μm features and in Micro Cold Spray for printing with solid metallic aerosols. These deposition tools offer extensive uses, but are still limited in certain applications by either line widths or the amount of overspray. Modeling of aerosol flow through micro-nozzles used in these applications yields a greater understanding of the focusing of these aerosol particles, and may provide a vehicle for new nozzle designs which will further enhance these tools. Recent modeling applied both Stokes and Saffman force to the aerosol particles. Under certain conditions particle rotation and Magnus force may also be necessary to accurately predict the aerosol particles. In this paper we will present our recent results of high-speed flow of 1–10 μm diameter aerosol particles through micro-nozzles in which the model includes all three forces (Stokes, Saffman, Magnus) of fluid-particle interaction, and a comparison of these results to experiments.

This content is only available via PDF.
You do not currently have access to this content.