This paper presents fabrication and characterization of micro-patterned magnetorheological elastomeric structures composed of magnetorheological fluid (MRF) sandwiched with magnetorheological elastomeric (MRE) materials. The MRE structures are made of polydimethylsiloxane (PMDS) with and without an additive of carbonyl iron (CI) particles with a size range of 6–9 um and the MRF is composed of silicon fluid mixed with the CI particles of the same size range. Three different SU-8 master molds of plain, longitudinal, and latitudinal patterns are constructed. Also, four MR elastomeric structures of different CI particle arrangements of isotropic MRE, anisotropic top-to-bottom-aligned MRE, anisotropic side-to-side-aligned MRE, and pure PDMS for each SU-8 master mold are fabricated. MRE structures are then characterized by using a tensile testing machine under a normal condition (off-state) and a low magnetic field condition (on-state). The tensile tests were performed to experimentally investigate their tunable properties. Later, the data gathered are compared for different conditions.

This content is only available via PDF.
You do not currently have access to this content.