Dynamic structural and fluid flow analysis of bulk acoustic wave piezoelectric valveless micropumps are carried out for the transport of water. The micropumps consist of trapezoidal prism inlet/outlet elements; the pump chamber, a thin structural layer and a piezoelectric element (PZT-5A), as the actuator. Governing equations for the flow fields and the structural-piezoelectric bi-layer membrane motions are considered. For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. Two-way dynamic coupling of forces and displacements between the solid and the liquid domains in the systems are considered where actuator deflection and motion causes fluid flow and vice-versa. The effects of inlet-outlet port angles and overall pump size on the flow rate are investigated. The flow rate is found to increase with decreasing outlet convergence angle and increasing inlet divergence angle. In the second part of the present work, the size of the entire micropump is scaled to 50%, 100%, and 200% respectively while electrical parameters are kept constant.
Skip Nav Destination
ASME 2013 International Mechanical Engineering Congress and Exposition
November 15–21, 2013
San Diego, California, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5639-0
PROCEEDINGS PAPER
Dynamic Analysis of Bulk Acoustic Wave Piezoelectric Micropumps: Effects of Inlet-Outlet Port Angles and Overall Pump Size
Ersin Sayar,
Ersin Sayar
Istanbul Technical University, Istanbul, Turkey
Search for other works by this author on:
Bakhtier Farouk
Bakhtier Farouk
Drexel University, Philadelphia, PA
Search for other works by this author on:
Ersin Sayar
Istanbul Technical University, Istanbul, Turkey
Bakhtier Farouk
Drexel University, Philadelphia, PA
Paper No:
IMECE2013-66211, V010T11A027; 10 pages
Published Online:
April 2, 2014
Citation
Sayar, E, & Farouk, B. "Dynamic Analysis of Bulk Acoustic Wave Piezoelectric Micropumps: Effects of Inlet-Outlet Port Angles and Overall Pump Size." Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 10: Micro- and Nano-Systems Engineering and Packaging. San Diego, California, USA. November 15–21, 2013. V010T11A027. ASME. https://doi.org/10.1115/IMECE2013-66211
Download citation file:
14
Views
Related Articles
Simulation and Analysis of a Magnetoelastically Driven Micro-Pump
J. Fluids Eng (June,2001)
Isentropic Compressible Flow for Non-Ideal Gas Models for a Venturi
J. Fluids Eng (March,2004)
Related Chapters
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition