The high performance of nature’s creations and biological assemblies has inspired the development of engineered counter parts that may outperform or provide new capabilities to conventional systems. In particular, the wings of bats contain distributed arrays of micro-scaled flow sensitive hair receptors over their surface, which inspires artificial hair sensors (AHS) development in aerodynamic feedback control designs using the micro-electro-mechanical systems (MEMS). One approach investigates the possibility of installing AHS on the leading edges of the wings of small-scaled unmanned aerial vehicles (UAVs) to improve the aerodynamic control. Our major motivation for the present study is that current mathematical models have limited relevance to aerodynamic situations because they are analyzed in steady or purely oscillatory flows. Our overall objective is to understand AHS fluid-structure interaction (FSI) in flow regimes relevant to small-scaled UAVs, for which we speculate a steady baseline flow perturbed by an oscillatory component is an appropriate flow reference condition. Towards understanding the AHS in this situation, we investigate the dynamic response of a hair receptor in a creeping flow environment with a steady and oscillatory component. We present time varying deflection and bending moment of the artificial hair sensors at different freestream velocities. For this, a three-dimensional FSI model is developed for the flexible hair-structure in the airflow, which is coupled with a finite element model using the computational fluid dynamics (CFD). The Navier-Stokes equations including continuity equation are solved numerically for the CFD model. To describe the dynamic response of the hair receptors, the natural frequencies and mode shapes of the hair receptors, computed from the FSI model, are compared with the excitation frequencies of the surrounding airflow. This model also describes both the boundary layer effects and effects of inertial forces due to FSI of the hair receptors. For supporting the FSI model, the dynamic response of the hair receptor is also validated considering the Euler-Bernoulli beam theory including the steady and unsteady airflow.

You do not currently have access to this content.