The objective of this paper is to introduce analytical closed form solutions for the prediction of effective axial and transverse Young’s modulus and Poisson ratios of a matrix-filled nanotube (i.e., a representative element of nanotube reinforced nanocomposites) as well as its mechanical behavior (i.e., displacements, strains and stress distributions) when it is subjected to externally applied uniform axial and radial loads. In this work, both the nanotube and its filler material are considered to be generally cylindrical orthotopic. For the derivation of exact solutions for radial loading case, no plain strain condition is assumed and effects of axial strain is taken into consideration to obtain a more precise set of solutions. Analytical formulae are developed based on the principles of linear elasticity and continuum mechanics and then exact solutions are obtained for displacements, strains and stress distributions within the domain of each individual constituent. To validate and verify the accuracy of the closed form solutions obtained from the analytical approach, a 3-D model of a matrix-filled nanotube is generated and solved for displacements, strains and stresses, numerically, using a finite element method. Excellent agreements were achieved between the results obtained from the analytical and numerical methods.

This content is only available via PDF.
You do not currently have access to this content.