A major detriment of two-phase microscale flow systems is a relatively high pressure drop, as well as the potential for flow instabilities. A possible mechanism to overcome these disadvantages is vapor extraction through a hydrophobic porous wall in the channel to reduce vapor content and suppress vapor expansion. The vapor extraction may occur either as evaporation, bubble extraction or a mix of both. For the design of vapor extraction systems, it is important to accurately predict extraction regimes, extraction rates and the effect of extraction on the heat transfer and flow conditions. This study focuses on two parts: the development of physic-based models for the transition criteria among (i) the extraction mechanism regimes, and (ii) the extraction flow regimes for microscale flow boiling. The identification and conditions for the various extraction regimes are discussed and criteria for transition are developed based on physical concepts. Six potential extraction mechanism regimes are identified: (a) no extraction, (b) pure evaporation, (c) pure bubble extraction, (d) bubble extraction with partial liquid blockage, (e) bubble extraction with evaporation, and (f) liquid breakthrough. Based on the criteria for the extraction mechanism regimes, the rate of vapor extraction is modeled and used to analyze the effects of vapor extraction on the dynamics of two-phase flow boiling. The results show six extraction flow regimes for two-phase flow boiling: (i) single-phase evaporation, (ii) two-phase evaporation – bubble collapse, (iii) full extraction – stable, (iv) full extraction – unstable, (v) partial extraction – stable and (iv) partial extraction – unstable.

This content is only available via PDF.
You do not currently have access to this content.