Thermosyphons are self-actuated heat transport systems in which the circulation of the working fluid is brought about by a combination of gravity and buoyant forces. In the recent years, thermosyphons have been considered for widely diverse heat recovery applications, especially in HVAC systems. In this work, a systematic approach for design and analysis of finned air-air thermosyphon heat exchanger system based on effectiveness-NTU method is presented. Furthermore, the effect of mass flow ratio of the hot and cold air stream, temperature difference between the hot and cold air streams, transverse tube spacing, fin spacing and length of the thermosyphon on the effectiveness of the system is predicted by numerical simulation. In addition, the thermal performance of unfinned thermosyphon heat exchanger system has also been investigated experimentally.

This content is only available via PDF.
You do not currently have access to this content.