The characteristics of pressure drop in corrugated pipes were experimentally studied in both straight and helically coiled configurations. The present study employed the stainless-steel pipes with the corrugation of circular cross section, which are widely used in boilers and pipe systems between solar panels and boilers. The diameters of corrugated pipes were 20.4, 25.4, 34.5 and 40.5 mm. The corrugated pipe, approximately 10 m in length, was configured either in the straight manner or in the helical coil with the helix diameter of 0.43 or 0.64 m. Water stored in a tank was fed into a corrugated pipe by a pump while the flow rate was controlled by a control valve. The friction factors of the pipes remain constant over the range of Reynolds number from 4,000 to 50,000, indicating that the flow in the pipe was fully turbulent. When the pipe was straightly configured, the friction factors were measured to be 0.070, 0.075, 0.12 and 0.22 for the diameter of 20.4, 25.4, 34.5 and 40.5 mm, respectively. Thus the present study showed that the friction factors increased with the increasing diameter of the pipe. This result is clearly contrary to a rare experimental result available in the literature. On the other hand, as expected, the friction factor for the helically coiled configuration was higher than that of the straight configuration with the same tube diameter, and the configuration of the smaller helix diameter yielded the larger friction factor. The reason for the increasing friction factor with the increasing pipe diameter remains to be explored further.

This content is only available via PDF.
You do not currently have access to this content.