Particle image velocimetry measurements are carried out to study the entrainment at the interface between the non-turbulent and turbulent regions in a square jet. Jet Reynolds number based on the hydraulic diameter of the jet is 50,000. Measurements cover up to 25 diameters downstream of the nozzle exit using five horizontal field-of-views in the central plane of the jet. The turbulent/non-turbulent interface is identified using a velocity criterion and a suitable thresholding method. Using vorticity and swirling strength it is shown that the turbulent/non-turbulent interface separates the rotational and irrotational regions of the flow. Instantaneous velocity vector field superimposed with the turbulent/non-turbulent interface are presented. The relation between the vortex cores in the vicinity of the turbulent/non-turbulent interface and the contractions and expansions noticed in the jet velocity field are explained. Entrainment into the jet is evaluated at each axial distance by identifying the points falling inside the turbulent region of the jet. Compared to a round jet, the square jet entrains more ambient fluid. In addition, normal volume fluxes going through the turbulent/non-turbulent interface of the square jet are found to be larger compared to that of a round jet.

This content is only available via PDF.
You do not currently have access to this content.