Significant cost reductions for solar photovoltaic systems can be realized through aerodynamic design improvements for ground mounted and rooftop installations. Current practices in the solar industry are based on ASCE-7 codes created for buildings and do not fully account for wind reduction strategies. Numerical simulation is one of the tools that can be used to evaluate wind loads and improve system designs while maintaining reliability and durability. As a first order analysis, we have numerically simulated a solar photovoltaic panel as a flat plate with an aspect ratio of 0.5, which includes the simulation of turbulence experienced by panels. The flow is simulated using the incompressible Navier-Stokes equation and the turbulent process is simulated using k–ε model. The numerical model and boundary conditions are derived from similar experimental wind tunnel experiments. The aerodynamic force is calculated from the integration of the normal and tangential pressure forces. The result of the numerical simulation shows that the wind load on a solar panel can be successfully simulated numerically and the simulation data can be used to evaluate redesigns of the system, allowing for the effective customization of solar arrays based on local conditions.

This content is only available via PDF.
You do not currently have access to this content.