It is well known that the rotor system will meet several critical speeds or unstable regions as its rotation speed increases, especially when the rotor system is supported by journal bearings, since there exists a strong fluid-structure coupling which is rather prone to stability issues. Stability analysis of rotor-bearing systems (such as turbine-compressor) has been extensively studied in the literatures over the past 50 years. However, few studies have been performed on geared rotor-bearing systems, especially for complex multi-stage gear train systems. In this paper, the abnormal noise/vibration problem on a high speed 2 stage epicyclic reduction gearbox of a turbine-generator system is studied. This gearbox showed abnormal low frequency vibrations at low speed cranking and high speed partial load conditions. Further detailed probe testing showed that the gear bodies which were supported by 6 journal bearings had quite large sub-synchronized vibrations and shaft whirls were developed when the abnormal noise was present. In order to better understand the root cause and to fully eliminate such low frequency noise/vibration, a detailed finite element model for the whole turbine-gearbox-generator was developed under different speed / load conditions. The linearized journal bearing stiffness and damping matrix were calculated using a separate tool and then plugged into the above FE model. The gears are modeled as rigid bodies and connected by gear mesh stiffness. Gyroscopic force terms have also been included in the model. The stability of the whole system was evaluated by a complex eigenvalue analysis and the stability margin evaluated by the corresponding damping factor (or log decrement). The model predicts a range of instability regions and has good correlation with testing data. The root cause of this abnormal noise/vibration is due to the strong torsional-lateral coupling of gear systems, and further coupling with the fluid dynamics of the journal bearings under certain speed/load conditions. Some sensitivity studies are also performed in order to increase the stability margin and eliminate the sub-synchronized vibrations.

This content is only available via PDF.
You do not currently have access to this content.