Wall-bounded separating and reattaching flows are encountered in biological applications dealing with blood flows through arteries and prosthetic devices. Separated and reattached flow regions have been associated in the past with the most common arterial disease, atherosclerosis. Previous studies suggest that local wall shear stress (WSS) patterns affect the location and progression rate of atherosclerotic lesions. A parametric study is performed to investigate the influence of hemorheology on the wall shear stress distribution in a separated and reattached flow region. Recent hemorheological studies quantified and emphasized the yield stress and shear-thinning non-Newtonian characteristics of unadulterated human blood. Numerical solutions to the governing equations that account for yield stress and shear-thinning rheological effects are obtained. A low WSS region is observed around the flow reattachment point while a peak WSS always exists close to the vortex center. The yield shear-thinning hemorheological model always results in the highest observed peak WSS. The yield stress impact on WSS distribution is most pronounced in the case of severe restrictions to the flow.

This content is only available via PDF.
You do not currently have access to this content.