Thermal necrosis of bone occurs at sustained temperatures above approximately 47°C. During joint replacement surgery, resection of bone by sawing can heat the bone above this necrotic threshold, thereby inducing cellular damage and negatively affecting surgical outcomes. The aim of this research was to investigate the effect of saw blade speed and applied thrust force on the heating of bone. A sagittal sawing fixture was used to make cuts in cortical bovine bone, while thermocouples were used to characterize the temperature profile from the cut surface. A full factorial Design of Experiments was performed to determine the relative effects of blade speed and applied thrust force on temperature. When comparing the effect of speed to force in the regression analysis, the effect of force on temperature (p < 0.001) was 2.5 times more significant than speed (p = 0.005). The interaction of speed and force was not statistically significant (p > 0.05). The results of this research can be used in the development of training simulators, where virtual surgeries with haptic feedback can be accompanied by the related temperatures in proximity to the cut. From a clinical perspective, the results indicate that aggressive cutting at higher blade speed and greater thrust force results in lower temperatures in the surrounding bone.

This content is only available via PDF.
You do not currently have access to this content.