Due to its ability to resist thermal fatigue and creep resistance at higher temperature, nimonic C-263 super alloy is frequently applied in the hot combustion chamber of gas turbines. By virtue of the above they induce tool wear while machining which seriously affect the life of the component, and it is a serious concern, since it is used in critical applications. To monitor the status of the tool condition, several sensors are utilised, of which acoustic emission is most widely used due to its nature of generation phenomenon. In this paper PVD coated carbide insert is utilised to conduct tool wear study through turning of nimonic C-263 super alloy. The experiments were performed at different combinations of cutting conditions. The life of the cutting tool at different cutting conditions and the tool wear mechanisms were analysed. Results revealed that acoustic signal predict the condition well and that cutting velocity play a major role in the tool wear progression. Abrasion, micro chipping and plastic deformation are observed to be the major tool wear mechanisms.

This content is only available via PDF.
You do not currently have access to this content.