Many fields of active research such as biomedical engineering, electronics, and optics have need of small metallic parts less than 1mm in size, with features measured in hundreds or tens of microns, with tolerances as small as 0.1 micron. Such parts include devices for studying the processes in the human body, devices that can be implanted in the human body, small lenses, and other small components. Micromilling is a microscale manufacturing process that can be used to produce a wide range of small parts, including those that have complex 3-dimensional contours. Micromilling is a process that is, on the surface, similar to conventional-scale milling, except for the use of tools that are around two orders of magnitude smaller than conventional endmills, and spindle speeds that are one or two orders of magnitude faster than conventional milling spindles. However, the underlying physical processes which occur in micromilling are unique due to scale effects, which occur due to the unequal scaling of physical properties between the conventional and the micro scale. One of the more recently-uncovered scale effects in micromilling is the increased ratio of tool size to feature size [1]. This scale effect causes an exacerbation of a kind of geometric error known as chord error and places a fundamental limitation on achievable feedrates within allowable machining error constraints. In this research, we hypothesize that the increase of chord error in microscale milling can be alleviated by intelligent modification of the kinematic arrangement of the micromilling machine. Currently, all 3-axis micromilling machines are constructed with a Cartesian kinematic arrangement, in which three linear axes are mounted perpendicularly. In this paper, we propose an alternate kinematic arrangement consisting of two linear axes and one rotary axis, creating a Polar kinematic arrangement. Through numerical simulation, we show that there are distinct classes of curvilinear geometries in which the Polar kinematic arrangement is preferable, and allows significant gains in allowable feedrates and reduction in chord error, while other curvilinear geometries show reduced chord error with the Cartesian arrangement.
Skip Nav Destination
ASME 2013 International Mechanical Engineering Congress and Exposition
November 15–21, 2013
San Diego, California, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5619-2
PROCEEDINGS PAPER
Comparison of Cartesian and Polar Kinematic Arrangements for Compensation of Scale Effects in Micromilling
Angela A. Sodemann,
Angela A. Sodemann
Arizona State University, Mesa, AZ
Search for other works by this author on:
Yogesh M. Chukewad
Yogesh M. Chukewad
Arizona State University, Mesa, AZ
Search for other works by this author on:
Angela A. Sodemann
Arizona State University, Mesa, AZ
Yogesh M. Chukewad
Arizona State University, Mesa, AZ
Paper No:
IMECE2013-65002, V02BT02A047; 10 pages
Published Online:
April 2, 2014
Citation
Sodemann, AA, & Chukewad, YM. "Comparison of Cartesian and Polar Kinematic Arrangements for Compensation of Scale Effects in Micromilling." Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 2B: Advanced Manufacturing. San Diego, California, USA. November 15–21, 2013. V02BT02A047. ASME. https://doi.org/10.1115/IMECE2013-65002
Download citation file:
16
Views
Related Proceedings Papers
Related Articles
Radial Throw in Micromilling: A Simulation-Based Study to Analyze the Effects on Surface Quality and Uncut Chip Thickness
J. Micro Nano-Manuf (March,2019)
A Static Model of Chip Formation in Microscale Milling
J. Manuf. Sci. Eng (November,2004)
Intelligent Tool-Path Segmentation for Improved Stability and Reduced Machining Time in Micromilling
J. Manuf. Sci. Eng (June,2008)
Related Chapters
Accuracy of an Axis
Mechanics of Accuracy in Engineering Design of Machines and Robots Volume I: Nominal Functioning and Geometric Accuracy
Infinitesimal Mechanics of the PKMs
Mechanics of Accuracy in Engineering Design of Machines and Robots Volume I: Nominal Functioning and Geometric Accuracy
A Method for Matching Two-Dimensional Contours
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3